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Abstract

Due to its collaborative nature, Wikidata is known to have a com-
plex taxonomy, with recurrent issues like the ambiguity between
instances and classes, the inaccuracy of some taxonomic paths, the
presence of cycles, and the high level of redundancy across classes.
Manual efforts to clean up this taxonomy are time-consuming and
prone to errors or subjective decisions. We present WiKC, a new
version of Wikidata taxonomy cleaned automatically using a com-
bination of Large Language Models (LLMs) and graph mining tech-
niques. Operations on the taxonomy, such as cutting links or merg-
ing classes, are performed with the help of zero-shot prompting on
an open-source LLM. The quality of the refined taxonomy is eval-
uated from both intrinsic and extrinsic perspectives, on a task of
entity typing for the latter, showing the practical interest of WiKC.
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1 Introduction

Wikidata is a general-purpose Knowledge Base (KB) maintained
by a large community of contributors. As a collaborative project,
Wikidata faces several challenges, including the ambiguity, incon-
sistency, redundancy, and complexity of its taxonomy. Ambiguity
arises from the confusion between instances and classes. For ex-
ample, scientist (Q901) is both an instance of profession (Q28640)
and a subclass of person (Q215627). Inconsistency here refers to the
inaccuracy of some taxonomic paths. For instance, city (Q515) is in-
accurately classified as a subclass of mathematical object (Q246672)
through the following taxonomic path: city (Q515) — spatial en-
tity (Q58416391) — geometric object (Q123410745) — mathematical
object (Q246672). Redundancy is also prevalent with classes like
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human (Q5) and person (Q215627) coexisting, where one would suf-
fice. The complexity of the taxonomy is another major issue. The
taxonomy of Wikidata has a depth of 20, contains many cycles, like
axiom (Q17736) — first principle (Q536351) — principle (Q211364)
— axiom (Q17736), and transitive links, like airport (Q1248784) —
aerodrome (Q62447) — station (Q12819564) and airport (Q1248784)
— station (Q12819564). Additionally, only 4% of the 4 million classes
are instantiated, with many lacking labels and descriptions.

In this paper, we propose an approach for refining Wikidata
taxonomy and thus addressing some of the above issues. Unlike
YAGO 4.5 [19], where the upper taxonomy of Wikidata is manually
mapped to Schema.org! while the lower taxonomy remains un-
changed, we adopt an automated approach for refining the whole
taxonomy, based on a combination of Large Language Models
(LLMs) and graph mining techniques. Specifically, we use a zero-
shot prompt on each link of the taxonomy, asking the LLM to predict
one of the following relations: subclassOf, superclassOf, equivalent,
irrelevant, or none. Given different predictions, we decide whether
to cut the link, merge the classes, or keep the classes and their link
unchanged. This yields WiKC, a cleaned version of Wikidata tax-
onomy, which we make publicly available?. The quality of WiKC
is then evaluated from both intrinsic and extrinsic perspectives.
For extrinsic evaluation, we design a judge LLM on the task of
entity typing to compare WiKC with the original taxonomy of
Wikidata. For the sake of reproducibility, both steps (refinement
and evaluation) are based on an open-source LLM.

The paper is structured as follows. Section 2 covers the related
work, Section 3 describes our approach for taxonomy refinement,
Section 4 presents the evaluation and Section 5 concludes the paper.

2 Related Work

General-purpose knowledge bases. Wikidata [21] is the largest
open general-purpose KB, maintained by a large community of
contributors. Due to its collaborative nature, Wikidata is known
to have a complex taxonomy, including errors, redundancies and
inconsistencies [6, 18]. Cleaning this taxonomy is the main objective
of our work. Other general-purpose KBs include DBpedia [3] and
YAGO 4.5 [19]. DBpedia is a multilingual KB automatically extracted
from Wikipedia and more recently, Wikidata. Its ontology covers a
wide range of concepts but suffers from inconsistencies [1, 17] due
to its reliance on Wikipedia and the prioritization of coverage over
precision. YAGO 4.5 is based on Wikidata, with a manual mapping
of the upper taxonomy to Schema.org, providing a clean upper-level
taxonomy designed by human experts. In this paper, we propose an
automatic approach for refining the Wikidata taxonomy, without
requiring any human expertise or subjective decision.

!https://schema.org
Zhttps://github.com/peng-yiwen/WiKC
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Taxonomy refinement, taxonomy induction. Taxonomy re-
finement is the task of updating an existing taxonomy while main-
taining its structure. Previous methods are either domain-specific
[15] or depend on lexical structures of existing hierarchies [16].
Recently, more advanced approaches have incorporated word em-
beddings into taxonomy refinement. For instance, hyperbolic em-
beddings are used in [2] to detect outliers in a domain-specific
taxonomy. In [14], a hierarchical semantic similarity metric is used
to select better embeddings and then refine a taxonomy.

Few studies have explored the use of LLMs in taxonomy refine-
ment. Instead, LLMs have been applied to the closely related task
of taxonomy induction [4, 8, 11, 23], which derives a taxonomy
from scratch given entities extracted from text. For example, an
approach called Chain-of-Layer is used in [23] to select relevant
entities. A zero-shot knowledge-agnostic strategy is used in [7]
for constructing the upper levels of a taxonomy. In [11], a concept
hierarchy is generated for a given domain starting from a seed
concept. The reliability of LLMs in hierarchical structure discovery
is demonstrated in [20] for common knowledge graphs, including
Schema.org. While these studies show the potential of LLMs in
taxonomy induction, the automatic refinement of a large common
taxonomy like that of Wikidata remains an open challenge.

3 Approach

In our work, we use the truthy version of Wikidata3, which contains
the best non-deprecated rank for each property.

3.1 Taxonomy Extraction

In principle, the taxonomy of Wikidata is defined by the subclassOf
(P279) property. In practice, this property is often confused with the
instanceOf (P31) property by contributors to Wikidata, requiring
some work to extract the actual taxonomy.

Instance or class? We extract instances and classes using the
instanceOf and subclassOf properties, respectively, giving priority
to the instanceOf property if both appear. For example, the entity
hydrogen (Q556), which is both an instance of chemical element
(Q11344) and a subclass of energetic material (Q5376832), is consid-
ered as an instance, not a class. However, some exceptions must
be taken into account. For example, the entity company (Q783794),
which is an instance of type of organisation (Q17197366) and a sub-
class of organization (Q43229), should be considered as a class. The
difference with the previous example is that the entity type of or-
ganisation is, in fact, a metaclass (Q19478619), i.e., a class which
has instances that are all themselves classes. Given that, the entity
company should indeed be considered as a class, not an instance.

In our case, we consider that an entity is a meta-class if it is
an instance of either metaclass (Q19478619) or second-order class
(Q24017414) that meets the following criteria: (1) Its label contains
a keyword like type, class, style, genre, form, occupation, profession,
category, classification, (2) Its label does not contain a preposition,
which corresponds to very specific classes, nor the keyword prop-
erty, which refers to classes of properties.

We also exclude BFO class (Q124711104) from the meta-classes
to avoid external ontologies. We finally obtain 434 meta-classes and
approximately 1.7M classes (either an instance of a meta-class or

3Data dump dated March 22, 2024, and 949GB after unpacking.
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an entity that has the subclassOf property and not the instanceOf
property; meta-classes are excluded). The class product (Q2424752)
was manually added because it is an important class, e.g., one of
the 11 top-level classes of Schema.org, filtered out by the previous
process as an instance of economic concept (Q29028649).

Graph construction. Among all entities declared as classes by
the previous process, we only keep those with a label. We build
a directed graph between these 1.6M classes using the subclassOf
property. We then explore the taxonomy from the root class entity
(Q35120) by depth-first-search (DFS) and break any link that would
create a cycle. During traversal, we also bypass any class without a
description, as most of these classes are either redundant or overly
specific. For example, the class award for best screenplay (Q96474700)
is a subclass of award for best book (Q105810971), which is itself a
subclass of literary award (Q378427); here we bypass award for best
book due to the absence of description in Wikidata.

Filtering. We exclude the class scholarly article (Q13442814) and
all its successors in the graph, as the addition of scholarly articles
to Wikidata has been controversial? and would contribute more
than 40M entities. We also remove classes that do not have in-
stances (there are 252k of them). In addition, we eliminate top-level
classes (subclasses of root class entity) that do not have subclasses
themselves, such as unidentified entity (Q120725535) and named
entity (Q25047676). These classes are either derived from external
ontologies or are too general to be useful in our taxonomy.

After completing the aforementioned steps, we obtain an acyclic
taxonomy with approximately 40k classes and 53k links, where
each class has a label and a description.

3.2 Taxonomy Refinement

We refine the taxonomy to address issues like redundancy and in-
consistency. For instance, the class city or town (Q27676416) is a
subclass of city or town (Q7930989) (redundancy) and a transitive
subclass of mathematical object (Q246672) (inconsistency). For this,
we prompt an LLM (see details in §3.3) to analyze each link of the
graph and predict the correct semantic relation from the follow-
ing ones: subclassOf, superclassOf, equivalent, irrelevant, and none.
The superclassOf prediction is used to potentially reverse the link
direction. Given these results, obtained for each link of the graph,
we apply the following steps sequentially: (1) Cut irrelevant links;
(2) Resolve reversed links; (3) Reduce transitive links; (4) Merge
equivalent classes; (5) Rewire links upon confirmation by LLM and
(6) Filter out non-informative and rare classes. The evolution of the
subgraph corresponding to the paths from city or town (Q7930989)
to entity (Q35120) is shown in Figure 1, after each refining step. The
details for each step are described below.

Cut. Any link that is predicted as irrelevant or none is cut if the
corresponding classes remain connected to the root class entity after
the cut, or if the disconnected subgraph after the cut has at most 3
nodes (in which case the corresponding classes are also removed
from the taxonomy). Links are considered in order of distance from
the root class entity. In Figure 1b for instance, city or town is no
longer a transitive subclass of mathematical object, because the link
from spatial entity to mathematical object is cut.

*https://www.mail-archive.com/wikidata@lists.wikimedia.org/msg06716.html
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Figure 1:

Resolve. When the link prediction is reversed, i.e., class A is
predicted as a superclassOf class B instead of a subclassOf class B, we
merge these classes or cut their link depending on the connectivity
of class A in the graph: if class A is a subclass of other classes than
B, the link between classes A and B is cut; otherwise, classes A
and B are merged. Merging is reasonable in this resolving step as
reversed links are usually caused by similar classes, making it hard
to decide which one is a subclass of the other. In Figure 1c, the
link from locality to section of populated place is cut as locality has
another superclass, human settlement.

Merge. We merge classes that have exactly the same label or
that are predicted as equivalent by the LLM. Specifically, if class A is
predicted as equivalent to class B instead of a subclassOf class B, class
A is merged into class B. The subclasses of class A are then relinked
to class B as its subclasses. A transitive reduction is performed after
each merging operation to prevent the introduction of transitive
links and cycles in the taxonomy. In Figure 1e for instance, the class
locality, defined as a place of human settlement, is merged into class
human settlement as these two classes are predicted as equivalent.

Rewire. After the previous merge step, we inspect the potential
subclass links between class B (the former superclass of class A), and
the other superclasses of class A, if any. Here we use the same LLM
and prompt to check these links and only accept those correctly
predicted as subclassOf. Our experiments show that, out of such
280 potential subclass links, 118 are correctly predicted by the LLM.
For instance, after the merge of tweezers (Q192504) into forceps
(Q1378235), forceps becomes a subclass of hand tool (Q2578402),
another superclass of tweezers, after confirmation of the LLM.

Filter. In this final step, to further overcome redundancy issues,
we remove recursively non-informative classes (classes with only
one superclass, one subclass, and without direct instances), rare
classes (classes with at most one instance including both direct and
transitive instances, or without a Wikipedia page®), and specific
top-level classes (top-level classes whose subclasses are all linked to
other deeper level classes)®. The remaining classes are reconnected

SFor classes without any Wikipedia page, we consider only classes with a depth higher
than 3, as the upper-level classes might be too abstract to be described in Wikipedia
(e.g., artificial object (Q16686448)).

SFor instance, testbed (Q1318674) is a specific top-level class. The subclass of testbed,
elevator test tower (Q1689156), is also a subclass of a deeper level class tower (Q12518),
and testbed is too specific to be directly linked to the root class entity (Q35120).

@St georaoic ety

§reonotsecs

Qresionofspsce |
@Suncaiguogaphc ey

Qs ey
geograpnidregion
g

O 3eographic region goecsrapniregion
1

omaed iace Qe Qs
ogumansctement omuman stsement o uman setement
s . oo wea o s
ety X
wietanseghment \tonsetement
ey ortown acivortom vty o town
(d) Reduce (e) Merge and rewire (f) Filter

Taxonomy from city or town (Q7930989) to entity (Q35120) after each step of the refinement.

respecting the previous taxonomy structure if no transitive links
are created. In Figure 1f for instance, the non-informative class
spacetime region is removed and the class region of space becomes a
subclass of spatio-temporal entity; the rare class urban settlement
is also removed (due to the absence of a Wikipedia page) and the
class city or town becomes a subclass of urban area.

After refining the taxonomy of Wikidata, we obtain a new acyclic
taxonomy called WiKC, with approximately 17k classes and 20k
links, without any cycles and transitive links.

3.3 Large Language Models

For the sake of reproducibility, we use the open-source LLM Mixtral-
8x7B-Instruct-v0.17, with a temperature set to zero to get determin-
istic results. We formulate a prompt to enable the LLM to generate
answers from the context, including class labels and descriptions.
Inspired by the chain-of-thought [22], which bridges the reasoning
gap between input and answer, we add an explanation part before
the answer to ensure careful analysis before predicting the semantic
relation. The corresponding prompt is shown below.

%Instructions:

You are a linguistic expert who understands the semantic relationships between
concepts. Your task is to determine the most appropriate semantic relation
between two provided concepts based on the available labels and descriptions.
The potential relations are: "subclass of", "superclass of", "equivalent to",
"irrelevant to", or "None" if none applies. You should select exclusively
from these relation options and not introduce other relationships.

Please structure your response as follows:

Response: ::

Explanation: (your analysis of the semantic relation between two concepts).
Answer: (state the relation explicitly, e.g. "ConceptA is [relation] ConceptB")

%User Message:

Examine the relation between the following two concepts, each described below:
# ConceptA: labeled as "{child_label}", described as "{child_description}".
# ConceptB: labeled as "{parent_label}", described as "{parent_description}".
Response:::

4 Evaluation

We assess the quality of WiKC from intrinsic and extrinsic perspec-
tives. Data, code, prompts, and resources are all available online®.

Intrinsic evaluation. We verified the inclusion of the 40 upper-
level classes of YAGO 4.57 in WiKC. There are only two exceptions:
yago:Gender, which can be represented by the property sex or gender

"https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
8https://github.com/peng-yiwen/WiKC
https://yago-knowledge.org/data/yago4.5/design-document.pdf
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(P21), and schema:Taxon, which is a specific class of the biological
domain. Following YAGO 4.5 [19], we evaluate WiKC in terms of
three key criteria: complexity, conciseness, and understandability
(fraction of classes having labels and descriptions). The statistics are
given in Table 1. As expected, WiKC is much simpler and much more
concise than Wikidata taxonomy. Compared to WiKC, Wikidata
taxonomy has a factor higher than 200 in the number of classes,
and a factor higher than 10 in the average number of paths from
an instance to the root class entity (Q35120).

Table 1: Quality Measures

Criterion Metric Wikidata WiKC
Classes 4.1M 17k
Top-level classes 38 16
Complexity Links 4.8M 20k
Depth 20 13
Average paths to root 37 2.9
Cycles 35 0
Conciseness Redundant links 500k 0
Classes without instances 3.9M 0
Understandability — Labels and descriptions 78% 100%

Extrinsic evaluation. We further evaluate WiKC on a task of
entity typing, i.e., the prediction of the classes of an entity. This is
a crucial task for various downstream tasks, like entity alignment
[13] or entity linking [12]. Our evaluation includes the direct classes
of each instance as well as their ancestors in the taxonomy, in order
to assess the inconsistency of some taxonomic paths.

We collect instances from the Wikidata dump based on the in-
stanceOf (P31) or occupation (P106) relations, excluding scholarly
articles (described in Section §3.1), ensuring each instance has a
label, a description, and an English Wikipedia page (resulting in
7M instances). We retype these instances using WiKC by assign-
ing instances to their nearest classes in the taxonomy. To avoid
class distribution imbalance (e.g., the class person can have 2.6M
cumulative instances), we limit each class to 1000 instances and
randomly sample 100k samples overall, resulting in nearly 1M type
statements per taxonomy. We design a judge LLM to verify the
accuracy of type statements based on the context provided by an
instance. For example, given the context: = Paris« is described as the
capital of France, the LLM judges if the statement *Parisx is a [city
or town], which means ’large human settlement’ is True or False.
In this case, the class within brackets can be any ancestor of city
(Q515), the direct class of Paris (Q90).

Table 2 demonstrates the accuracy of entity typing across differ-
ent depths of the taxonomy on Wikidata and WiKC, where depth
refers to the shortest distance from the root class entity. The re-
sults show that WiKC consistently outperforms Wikidata across
all depth ranges. WiKC shows significant accuracy gains at deeper
levels (depth 10 or more), suggesting that WiKC has resolved many
inconsistency issues in the lower levels of the Wikidata taxonomy.
The fact that accuracy is higher at a deeper level (depth 5 or more)
compared to a shallow level on WiKC can be explained by the fact
that more specific types are easier for LLMs to judge. For example,

10We use the same model Mixtral-8x7B-Instruct-v0.1.
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it is easier to classify Motokazu Mori (Q75688679) as a poet (Q49757)
(depth 9) than as a corporate body (Q106668099) (depth 2).

Table 2: Accuracy of entity typing on Wikidata and WiKC.

Depth  [0,5) [5,10)

Wikidata  41% 47% 37% 43%
WIiIKC 67% 76% 75% 70%

[10, ©0) Macro

Discussion. We here discuss some limits of our work.

(1) Problems with the LLM. The LLM might hallucinate by pro-
ducing responses in conflict with the input prompt. For example,
when checking the link coke plant (Q905318) — coke (Q192795), the
LLM generates a response where coke (Q192795) is a subclass of
coke plant’s product, creating a new class instead of respecting the
input. It should generate none if no appropriate relation is found
between the two classes, rather than hallucinating a non-existent
class in Wikidata. Additionally, the LLM can exhibit inconsistency
between the explanation part and the answer part, although this
happens rarely. For instance, in the explanation part, input device
(Q864114) is analyzed as one type of physical interface (Q64830866)
that specifically provides data and signals to an information process-
ing system. But the answer incorrectly orders the classes, stating
that physical interface is a subclass of input device.

(2) Applications to downstream tasks. Even though we perform
both intrinsic and extrinsic evaluations of WiKC, we cut away large
parts of the Wikidata taxonomy (from about 4M to 17k classes).
Therefore, it is also important to assess the knowledge coverage of
WIiKC and its usefulness for downstream tasks.

5 Conclusion

In this paper, we propose WiKC, a cleaned version of Wikidata tax-
onomy, generated by an automated process combining zero-shot
prompting on an open-source LLM and graph mining approaches.
The objective is to address several known limits of Wikidata taxon-
omy, such as inaccurate taxonomic paths, redundancy across classes,
complexity, and ambiguity between instances and classes. Our ap-
proach consists of cutting irrelevant links, resolving reversed links,
reducing transitive links, merging equivalent classes, rewiring links
upon reconfirmation of LLM, and filtering out non-informative or
rare classes. The experimental results show the improved accuracy
and conciseness of WiKC compared to the original taxonomy of
Wikidata. In addition, we provide a mapping file from WiKC to
Wikidata, encouraging the reuse of WiKC in various downstream
tasks, such as entity recognition [10], entity linking [5] and entity
summarization [9], to further validate its reliability and its coverage
of general knowledge.

For future work, we consider directions for exploring other open-
source LLMs to clean and evaluate taxonomies based on our pro-
posed pipeline, and investigating the trustworthiness of these LLMs
in the taxonomy refinement task. It is also valuable to share this ap-
proach with the Wikidata community to further check its feasibility
and help alleviate the burden of manual taxonomy cleaning!!.

Uhttps://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Cleaning_Task_
Force
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